Structure of the Triselenourea Ion in the Dichloride and Dibromide Salts

SVERRE HAUGE, DAVID OPEDAL and JON AARSKOG

Chemical Institute, University of Bergen, Bergen, Norway

As part of a study of linear three-selenium systems,¹ crystal structure analyses of triselenourea dichloride hydrate, [SeC(NH₂)₂]₃Cl₂·H₂O (I), and triselenourea dibromide hydrate, [SeC(NH₂)₂]₃Br₁·H₂O (II), are carried out. These compounds were first prepared and described by Verneuil.²

The dichloride was prepared by oxidation of a cold hydrochloric acid solution of selenourea with sodium hypochlorite. One recrystallization from 2 N hydrochloric acid gave reddish brown prisms. The dibromide was prepared as described by Verneuil, through air oxidation of a hydrobromic acid solution of selenourea. The formation reaction:

$$3 \, \text{SeC(NH_2)_2} = [\text{SeC(NH_2)_2}]_2^{2+} + 2e$$

is analogous to those of the trihalide ions, and the triselenocyanate ion:1-3

$$3 \operatorname{SeCN}^- = (\operatorname{SeCN})_{\bullet}^- + 2e$$

The crystals of the two compounds are isomorphous, with a=12.202(5) Å, b=18.142(7) Å, and c=12.232(5) Å for I, and a=12.604(5) Å, b=18.268(7) Å, and c=12.512(5) Å for II. The space group is Pbca (No. 61), and there are eight formula units per unit cell; density, calc. 2.25, found 2.26 g/cm³ for I, and calc. 2.52, found 2.55 g/cm³ for II. The intensities were estimated visually from integrated Weissenberg photographs around the a and c axes, taken with CuKa radiation using the multi-film technique. For each compound, about 1700 reflections were observed with measurable intensities, from the ten layers 0kl-7kl and hk0-hk1. The intensities were at later stages corrected for absorption and for secondary extinction.

The structures were solved by threedimensional Patterson and Fourier methods using the heavy-atom technique. Full-matrix least squares refinements with anisotropic temperature factors brought the reliability index, R, down to 0.056 for I and 0.063 for II. The coordinates of the heavy atoms at the present stage are listed in Table 1.

Table 1. Atomic coordinates.

		I	
	\boldsymbol{x}	$oldsymbol{y}$	z
$\mathbf{Se_{i}}$	0.2809	0.2713	0.1656
Se_2	$\boldsymbol{0.2524}$	0.4128	0.1794
Se_{3}	0.2447	0.5625	0.1846
Cl_1	0.0606	0.1042	0.4730
Cl_2	0.0565	0.3963	0.4649
II			
	\boldsymbol{x}	$oldsymbol{y}$	z
Se_1	0.2786	0.2740	0.1653
Se_2	0.2524	0.4161	0.1796
$\mathbf{Se_8}$	0.2460	0.5644	0.1848
Br_{1}	0.0617	0.1018	0.4744
$\mathrm{Br}_{\mathbf{z}}$	0.0585	0.3956	0.4699

The triselenourea ion in I is shown in Fig. 1. In both compounds the $Se_1-Se_2-Se_3$ angle is 174° and the $C_2-Se_2-Se_1$ and $C_2-Se_2-Se_3$ angles are 89° . The Se_1-Se_2 bond lengths are 2.60 Å in I and 2.62 Å in II, and the Se_2-Se_3 bond lengths are 2.72 Å in I and 2.71 Å in II. These values for Se-Se bond lengths,

Fig. 1. The triselenourea ion in $[SeC(NH_2)_2]_3Cl_2\cdot H_2O$, as seen normal to a plane through Se_1 and Se_3 passing approximately equidistant from C_2 and from C_1 and C_3 .

particularly the total lengths of the very nearly linear three-selenium systems, are close to the values found in the triselenocyanate ion.^{1,3} The selenourea groups of an ion are planar and approximately parallel, the plane of the middle (Se₂) selenourea group making angles of 15° and 5°, respectively, with the planes of the terminal (Se₁ and Se₃) selenourea groups, in both compounds. The three selenium atoms and the carbon atoms of the terminal selenourea groups lie approximately in the same plane; this plane makes an angle of about 75° with the plane of the three selenium atoms and the carbon atom of the middle selenourea group.

There is a close non-bonded contact between the middle selenium atom Se, and a halide ion X⁻, 3.46 Å in I and 3.53 Å in II, at a C—Se···X angle of 175°. A close non-bonded contact also occurs between Se, and a halide ion, 3.70 Å in I and 3.72 Å in II, at a C—Se···X angle of

65.°

A full account of the work will be published later.

- Foss, O. In Andersen, P., Bastiansen, O. and Furberg, S. Selected Topics in Structure Chemistry, Universitetsforlaget, Oslo 1967, p. 145.
- Verneuil, A. Ann. Chim. Phys. [6] 9 (1886) 289.
- Foss, O. and Hauge, S. Acta Chem. Scand. 17 (1963) 1807.

Received March 18, 1970.

Studies on Orchidaceae Alkaloids

XIX.* Synthesis and Absolute Configuration of Dendrine

INGRID GRANELLI and KURT LEANDER

Department of Organic Chemistry, University of Stockholm, Sandåsgatan 2, S-113 27 Stockholm, Sweden

Dendrine, a minor alkaloid from Dendrobium nobile Lindl., has been assigned the structure I, with only the configuration at C-14 undetermined. In the present communication a synthesis of dendrine (I) by a Reformatsky reaction on dendrobine immonium bromide (III) is reported.

Oxidation of dendrobine (II) with N-bromosuccinimide in ether-acetone afforded the immonium salt III.¹ By reacting III with methylbromoacetate and zincopper couple in N,N-dimethylformamide at 100°, two bases were formed. The major product, m.p. $188-189^{\circ}$, $[\alpha]_D^{18}-80^{\circ}$ (c 0.17, chloroform), has properties (NMR, IR, MS, GLC, TLC) indistinguishable from those of authentic dendrine (I), except for specific optical rotation which was previously reported to be $[\alpha]_D^{18}-114^{\circ}$ (c 0.85, chloroform).¹ However, our measurement of optical rotation of authentic dendrine (I), $[\alpha]_D^{24}-81^{\circ}$ (c 0.14, chloroform), was very close to the specific rotation of the synthetic product reported herein.

IV Dendrine C-14 epimer

The minor product (IV) was obtained as a gum, $\left[\alpha\right]_{\mathrm{D}}^{20} + 23^{\circ}$ (c 0.57, chloroform). Its mass spectrum was indistinguishable, except for small differences in intensities of some of the peaks, from that given by dendrine (I). The similarity of the mass spectra of I and IV suggests that the bases are epimers, which is further supported by their IR and NMR spectra.

In the synthesis, the epimers I and IV were formed in the ratio 15:1. The Reformatsky reagent preferably attacks the

^{*} For No. XVIII of this series, see Ref. 1.